- 8. G. HENRY, L. ROESH and J. PLATEAU, "Deformation plastique des m6taux et alliages" (Masson Edition, France, 1968) p. 191.
- 9. M. ARZIN and W. A. BACKOFEN, *Met. Trans. 1* (1970) 2857.
- 10. P. D. HOLMES, Ph.D. Thesis, University of Sheffield (1973).
- 11. J. D. ATKINSON, Ph.D. Thesis, University of Cambridge (1973).
- 12. M. ENTRINGER, G. DE KAINLIS, private communication (1977).
- 13. R. T. RATCLIFFE, *Brit. Z Appl. Phys.* 16 (1965) 1193.
- 14. J. LEMAITRE, J. P. CORDEBOIS, J. DUFAILLY, private communication.
- 15. D.W. WILSON, "Effect of Second Phase Particles on Mechanical Properties of Steel" (Iron and Steel Institute, 1971) p. 28.

Improvement in the method for the impregnation of gypsum casts

Cast gypsum in the form of plaster of Paris casts and dies is particularly deficient in its mechanical properties $[1-4]$. A method reported to be effective in the enhancement of the properties of gypsum materials has been fully documented by Earnshaw [3, 4]. The method involved soaking the material in a liquid monomer to fill the void space and polymerizing *in situ* using thermal catalytic means. The reported new method [5] consists of an activated methyl methacrylate system that polymerizes in under 3 h and at ambient temperatures.

The specimens were prepared using an unmodified industrial plaster in various water-powder ratios and in various gang moulds (Table I). After casting the samples were removed and dried at 100° C for 24 h and were stored in a vacuum dessicator at room temperature prior to testing. The cast materials were immersed for approximately 1.5 h in a solution made up of methyl methacrylate (100 parts), lauroyl peroxide (4 parts) and N,N-dimethyl-p-toluidine (2 parts, wt/wt). When the temperature of the soak solution had risen to 60° C (about 90 min) the specimens were removed and allowed to stand at room temperatures for 30 min before testing.

Compressive, tensile and flexural strengths were determined using an Instron mechanical

- 16. H. C. ROGERS, "Metal Forming Interaction between Theory and Practice" (Plenum Press, New York and London, 1971) p. 453.
- 17. J. R. RICE and D. M. TRACEY, J. *Mech. Phys. Solids.* 17 (1969) 201.

Received 26 July and accepted 19 September 1977.

> JEAN-MICHEL JALINIER B. BAUDELET *Laboratoire de Physique* et Technologie des Matériaux, *Universit~ de Metz, France* R. ARGEMI *Laboratoire de Physique du Solide, Ecole des Mines, Nancy, France*

testing machine (Model TT(b)). Abrasion resistance was measured using a method similar to that reported by Mulhearn and Samuels [6]. Sample weight loss was recorded by abrading with a silicon carbide wheel under a 1 kg load for a period of 2 min. The results clearly demonstrate the enhancement in properties due to polymer impregnation and also the effects of varying the water-powder ratio (Table I).

TABLE I The effects of polymer impregnation on the properties of gypsum casts.

(a) Sample dimensions.

TABLE I continued

References

- 1. R. EARNSHAW, and D. C. SMITH, *Austral D. J.* 11 (1966) 415.
- 2. S. TOREKOG, R. W. PHILIPS, and R. J. SCHNELL, *J. Pros. Den.* 16 (1966) 119.
- *R. W. EARNSHAW, Austral.* D. J. 21 (1976) 160. *3,*
- *Idem, J. Mater. Sci.* 8 (1973) 911. *4.*
- J. PEARCE-WHITTAKER, and P. H. JACOBSEN, British Patent Application (1977). *5.*
- 6. T.O. MULHEARN and L. E. SAMUELS *Wear 5* (1962) 478.

Received 19 September and accepted 1 November 1977.

Correlations between oxygen transport phenomena in non-crystalline silica

The mobility of oxygen in fused silica is evident in a variety of phenomena such as permeation of $O₂$ gas, oxidation of silicon surfaces, and O_2/SiO_2 isotope exchange. However, a mechanistic relationship between all these processes has not yet been presented. The formation of amorphous silica scales during oxidation of silicon is known to be rate-controlled by permeation of molecular O_2 through the $SiO₂$ layer [1]. On the other hand, oxygen tracer diffusion coefficients as measured by isotopic exchange techniques are said to be uncorrelated to O_2 diffusion-controlled phenomena [2]. However, there should be a common underlying mechanism for the transport of oxygen because all the processes have uniformly low activation energies, depend linearly on the partial pressure of oxygen (p_0) , as well as having algebraic relationships between their respective rate laws. All these observations can be understood if the transport of oxygen involves the interaction of O_2 molecules dissolved in SiO_2 with oxygen of the silica network (lattice oxygen).

Haul and Dümbgen $[3]$ were the first to relate permeability of $O₂$ gas to diffusion coefficients measured by gas/solid isotope exchange. In their model interstitially dissolved O_2 acts as a defect by which lattice oxygen migrates. The diffusion of lattice oxygen (D_O) then, can be related to O_2 permeability $(P_{O₂})$,

by

$$
P_{O_2} = D_{O_2} c_{O_2} / 7.6 \tag{1}
$$

London, UK

$$
D_{\mathbf{O}} = D_{\mathbf{O}_2} c_{\mathbf{O}_2} / c_{\mathbf{O}} = 7.6 P_{\mathbf{O}_2} / c_{\mathbf{O}} \qquad (2)
$$

where P_{O_2} is in units of cm³ gas (STP) sec⁻¹ for a 1 mm thick wall, 1 cm^2 area at 10 Torr gas pressure difference; D_{O_2} is the diffusion coefficient of molecular oxygen in cm² sec⁻¹; c_{O_2} and c_{Ω} are the concentrations of oxygen in units of $cm³$ gas (STP) per $cm³$ solid for dissolved O₂ and lattice oxygen in $SiO₂$ respectively.

The oxidation rate of silicon to silica (parabolic regime) is correlated with O_2 permeability [4], because the oxidation proceeds by diffusion of dissolved O_2 through the SiO₂ layer to the SiO₂/Si interface. Dankwerts [5] has shown that parabolic oxidation of surfaces can be described by a rate constant:

 \odot 1978 Chapman and Hall Ltd. Printed in Great Britain.